Addressing the challenges of offshore wind turbine installation and maintenance in high winds

Business case: Increasing maximum wind speeds for offshore wind installation

Business case: Increasing maximum wind speeds for offshore wind installation

Maximum wind speeds have a significant influence on costs and time required for offshore wind turbine installation projects. The maximum wind speed is the speed at which it is no longer possible to lift major turbine components (nacelle, tower and blades) by a jack-up vessel. The restricting factors are crew safety and equipment damage due to instability of the load during the hoist.

Kate Freeman and I recently performed an analysis of the main factors contributing to project delays and cost increases. Importantly, we have also analysed the impact of increasing the maximum wind speed – such that lifts can be performed at higher wind speeds. We looked at the potential savings by being able to complete offshore wind turbine installation projects in higher wind speeds. Continue reading

Reducing weather downtime in offshore wind turbine installation

Reducing weather downtime in offshore wind turbine installation

Recent advancements in technology can bring about a long-awaited positive development in the offshore wind industry: reducing weather risk associated with offshore wind turbine installation.

Difficult weather conditions often lead to significant project delays caused by downtime that extends project time and increases costs.

Of course, weather downtime is an unavoidable part of any installation process and must be figured into project costs alongside all of the different activities required of the jack-up, including mobilisation and demobilisation, loading of the wind turbine elements, transit between the port and the wind farm, positioning and jacking, and installation of the turbine. Continue reading

Robust calculation model for offshore wind turbine cost reductions

Robust calculations

The cost of the wind turbine installation setup is an important factor in the quest to reduce the levelised cost of energy (LCOE). Research and development within new technologies is key to making installation quicker, more reliable and safer.

But in order to fully understand the implications of reducing installation setup costs, it is necessary to perform robust calculations. And these calculations must be based on correct assumptions and figures that are as accurate as possible. Continue reading

Reducing weather sensitivity of turbine component lifting significantly reduces LCOE

Download the report

BVG Associates has recently analysed the effects of increasing the wind speed limit for turbine component lifts. The results of this analysis are described in detail in a new report, “Impact of the Boom Lock tool on offshore wind cost of energy”.

The report, available exclusively on this site, quantifies the impact on levelised cost of energy (LCOE) of reduced vessel use and earlier power generation, based on the use of the “Boom Lock” tool.

The report concludes that reducing weather sensitivity of turbine component lifting significantly reduces LCOE. Continue reading

The great offshore wind paradox

The offshore wind industry faces a well-known paradox. It needs wind to generate electricity, but too much wind makes it difficult to create the necessary infrastructure. Quite simply, lifting major components in high winds is one of the biggest issues facing offshore wind turbine installation. Over the years, thousands of days of installation time have been lost, leading to cost increases in the billions of Euros and huge project delays.

Various remedies have been attempted, but the nut still has not been cracked. In fact, I am rather surprised at the half-hearted efforts to address the paradox. Why? Because the impact of weather downtime has far-reaching ramifications in and beyond the industry. Continue reading

How can contractors contribute to a sustainable offshore wind industry?

Offshore wind now accounts for about 7% of European renewable energy generation.  Most of this new capacity has been built since 2015. Although the rate of growth has been slower than many expected or hoped, it is still a significant shift in the way Europe generates electricity. The change has been biggest in the UK, where offshore wind now generates about 5% of all its UK electricity demand.

But it hasn’t been cheap. In 2012, new offshore wind farms at final investment decision (FID) had a levelised cost of energy of about €150/MWh. At the time, the ambition was to get to about €110 for projects reaching FID in 2020. Led by the rapid introduction of next generation of offshore wind turbines, recent analysis by BVGA suggests that the 2020 target is well within reach. Continue reading